The{P,Q,k+1}-Reflexive Solution to System of Matrix EquationsAX=C,XB=D
نویسندگان
چکیده
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملSolution to a System of Matrix Equations
A square complex matrix A is called if it can be written in the form EP 1 0 U A U with U being fixed unitary and 1 A being arbitrary matrix in . We give necessary and sufficient conditions for the existence of the solution to the system of complex matrix equation r r r EP , AX B XC D and present an expression of the solution to the system when the solvability conditions are satisf...
متن کاملIterative algorithm for the generalized $(P,Q)$-reflexive solution of a quaternion matrix equation with $j$-conjugate of the unknowns
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
متن کاملEla the Reflexive Re-nonnegative Definite Solution to a Quaternion Matrix Equation∗
In this paper a necessary and sufficient condition is established for the existence of the reflexive re-nonnegative definite solution to the quaternion matrix equation AXA∗ = B, where ∗ stands for conjugate transpose. The expression of such solution to the matrix equation is also given. Furthermore, a necessary and sufficient condition is derived for the existence of the general re-nonnegative ...
متن کاملThe reflexive re-nonnegative definite solution to a quaternion matrix equation
In this paper a necessary and sufficient condition is established for the existence of the reflexive re-nonnegative definite solution to the quaternion matrix equation AXA∗ = B, where ∗ stands for conjugate transpose. The expression of such solution to the matrix equation is also given. Furthermore, a necessary and sufficient condition is derived for the existence of the general re-nonnegative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/464385